神舟13号飞船回家,由翟志刚、王亚平、叶光富组成的“太空出差3人组”,在我国空间站工作了天,刷新了单次飞行任务太空驻留时间的纪录。
太空出差三人组
神舟13号与空间站组合体脱离,再入大气层后,会在东风着陆场着陆。相信大家能注意到:每一艘神舟飞船在落地前的一刹那,都会冒出一道火光,不了解情况的观众可能会误以为发生了爆炸,其实那不是爆炸,而是着陆反推发动机启动了。
反推发动机启动是整个着陆过程的一个关键步骤。神舟13号飞船的返回舱经过空气制动、降落伞减速后,在最后接触地面的一瞬间,底部安装的反推发动机会启动,完成最后的减速刹车,将飞船稳稳地落在地上。而反推发动机需要在距离地面约1米高的地方点火,不能早也不能晚,必须要非常精准,这是为什么呢?
反推发动机启动时机要非常精准
在解答这个问题之前,有必要先说说神舟13号的主降落伞。这个降落伞非常引人注目,是世界上最大的降落伞,面积达到了平方米,重量却只有90多公斤。如果巨大的降落伞的减速效果当然会非常好,可将飞船的下降速度降低到8~10米/秒,或者说28.8~36公里/小时,但是却不能进一步减速了。
这是因为如果再增加降落伞面积的话,不仅重量和体积会增加,还会加剧气流对飞船着陆过程的影响,直白一点儿说就是会被风刮跑,使得飞船偏离预定着陆点,降低着陆精度,提高了搜救的难度。
所以说降落伞不能无限制地增大,不过假如飞船以二三十公里的速度直接落地的话,也是不可接受的,这相当于骑着一辆电动摩托车去撞墙。由于航天员是背部朝下面朝天坐在返回舱里,如此高的着陆速度有可能损伤航天员的颈椎,因此必须进一步减速。
这时候就轮到反推发动机登场了!飞船装有4台反推发动机,这些发动机使用固体燃料,非常小巧,但力气并不小,每台可以产生大约3吨的推力。4台发动机一起工作,总推力达到了10多吨,足以在一刹那将下降速度降低到2米/秒,也就是人走路的速度,再加上返回舱座椅的缓冲效果,就能保证航天员的安全了。
飞船内的航天员(神舟12)
然而这些反推发动机推力虽大,却是一锤子买卖,启动之后一下子就烧完了!这就对发动机启动时机提出了极高的要求。如果启动过早,飞船还处在半空中比较高的位置,在发动机关闭之后又会在重力作用下加速下落,造成着陆速度过大。
而如果启动迟了一点儿,飞船还没来得及减速就会撞地,同样不能将速度控制在安全范围之内。那么何时启动反推才最合适呢?必须在飞船距地面1米左右的高度,高了低了都不行,精度要达到厘米级!这时就会出现一个难题:如果才能判断返回舱的离地高度呢?
如何判断离地高度是个难题
有网友可能会说:这还不简单?中学物理就学过海拔高度和大气压之间有关联,高度越高,大气压越低。通过测量当前的气压值,不就能测出高度了吗?这个说法不能说有错,例如飞机上就装有气压高度计,但主要问题是精度太低了,两个高度差只有1米的位置,大气压几乎是相同的,根本测不出差别,无法达到控制点火的要求。
况且着陆场的地形并不是完全平坦,不可能预先知道着陆点的准确海拔,因此气压测高法完全不适用于这个场合。不过我们还可以考虑另一种方法:无线电测高。一般飞机在高度英尺(米)以下时,会使用无线电高度计。这个装置的原理跟雷达差不多。
无线电高度计向地面发出无线电波,并接收反射回波。由于光速太快,无法直接通过往返时间来算出高度。因此通常采用调频的方式,让电波的频率按一定规律随时间变化,这样接收到的回波频率就会出现一个差值,据此就能计算出距地面的高度。
飞机会使用无线电高度计
无线电高度计的测量精度高于气压高度计,可用于飞机的起降过程,但对于神舟飞船着陆的要求,即在1米高度上还能实现厘米级的精确测量,依然是力所不能及。除了无线电高度计之外,还有一种激光高度计,由于激光的频率远高于无线电波,它的测距精度会大大提高。
我国的嫦娥四号就安装了激光测距敏感器,从距月面30公里到15米的高度上,可以达到6厘米的测距精度,相当了不起。但是当高度进一步降低之后,激光高度计的误差也会增大,在1米高度上的测距能力也不能满足反推发动机点火所需。
这可怎么办呢?别急,我们的“终极神器”终于可以出场了,它就是γ射线高度计。这种装置会向地面发射γ光子,并接收散射回的光子。γ光子的频率远远高于激光和无线电波,以至于更像是一个粒子。
γ射线高度计原理
当这些γ光子到达地面后会产生散射,飞向四面八方。飞船高度较高时,只有很小一部分散射回来的γ光子会被γ射线高度计接收到,但是当高度降低到1米左右的近距离时,奇迹发生了:散射回来的γ光子数量会急剧增长,而且对高度非常敏感。通过测量接收到的光子数量,就可推算出当前的高度值,精确度极高。
以俄罗斯的联盟TMA载人飞船为例,它同样采用反堆着陆方式,所搭载的γ射线高度计在0.6~0.9米高度上,测距精度可达4厘米,而且测量的反应速度极快。其它测量方式目前还很难达到比γ射线高度计更高的水平。
我国神舟飞船使用的γ射线高度计是自行研制的,在历次载人飞行以及嫦娥探月任务中,都经受住了考验,表现十分优秀,其性能应不会弱于俄罗斯产品。正是在这样的“神器”支持下,神舟13号才有能力在即将落地的一刹那准确发出点火信号,并在20毫秒内启动反推发动机,在一闪而过的火光和烟雾之后,稳稳地降落在地面上。
γ射线高度计位于返回舱底部,着陆后会被盖住(神舟12)
说到这里,有心的网友会发现:既然要发出γ射线,返回舱上岂不是有放射源?答对了!确实有放射源,但它带有屏蔽装置,不会对舱内的航天员构成伤害。而在返回舱着陆后,地面人员会赶紧用特制的屏蔽盖将底部的高度计盖住。航天员出舱后,放射源会被取出来放到专用容器内储存。
现在您应该了解神舟飞船的反推着陆过程了吧?不过这里还有个疑问:中俄的载人飞船着陆方式差不太多,最后都是反推着陆,为什么另一个航天大国美国,却并没有采用这种着陆方式呢?
美国载人航天的着陆方式确实与中俄有巨大的差别。它的航天飞机是像飞机一样水平滑翔着陆的,可以降落在跑道上。不过航天飞机已成往事,美国现在又重拾起载人飞船的路线,目前使用SpaceX公司的龙飞船来运送宇航员往返国际空间站。
载人龙飞船在海上降落
不过不论是当年的水星、双子星、阿波罗飞船,还是现在的载人龙飞船,美国人的飞船在返回地球时都采用了同一种着陆方式:在海面上溅落。海水可以为飞船提供足够的缓冲,也就不再需要反推发动机了,节省了体积和重量。而且地球表面有70%以上是海洋,选择着陆场也比较方便,对着陆精度的要求也比较低。
那么问题来了:为什么中国和俄罗斯不采用海面溅落的方式呢?美国飞船在海面上降落,是因为它有着极为强大的海上实力。其军事基地遍布全球,拥有十余艘航空母舰,还有多艘两栖攻击舰,具备在全球范围内的海上搜索和救援能力。
但中国和俄罗斯就不同了,在海洋上的实力起码目前与美国的差距还比较大,无法有效控制海洋。用海面溅落的方式还需要出动庞大的舰队,成本高昂,而且一旦有其它势力前来骚扰,还存在一定风险。
俄罗斯飞船在草原上着陆
因此,俄罗斯选择在平坦的草原上着陆,例如哈萨克斯坦境内的大草原,而我国神舟11号及以前的飞船是在内蒙古四子王旗的着陆场,神舟12和13号则是在东风着陆场。
不过,神舟飞船这种“降落伞+反推发动机”的着陆方式,并不一定是最优选择。虽然反推发动机的体积和重量代价都比较小,但在着陆时却有可能损坏返回舱,导致飞船无法重复使用。航天器可重复使用是如今的潮流,可大幅降低成本,这个缺点是急需克服的。
SpaceX的龙飞船曾经想过用“反推火箭+着陆腿”的方式,类似于猎鹰9火箭回收,但NASA觉得风险太大,又改回了海上溅落。但海水的冲击力较小,溅落后的飞船在重复使用方面倒是也问题不大。但如果着陆场必须位于陆地上的话,怎样才能实现返回舱的可重复使用呢?
新一代载人飞船采用群伞+气囊缓冲
我国的新一代载人飞船就选择了“多个降落伞+缓冲气囊”的方案,在离地面较近时给气囊充气,通过柔软的气囊实现落地缓冲,同样可以减小对返回舱的损坏,实现返回舱的重复利用。这种方式占用的空间较大,适合于新一代载人飞船这种比较大的飞船。
新一代载人飞船的缓冲气囊
那么当神舟飞船退役,新一代载人飞船挑起大梁之后,γ射线高度计会不会失去用武之地呢?那倒不会,当我们探测火星、月球以及太阳系其它星球时,γ射线高度计这种极低高度测距设备还将继续大显身手。
搜索神舟十三全程直播5分钟回顾神舟十三号飞船返回步骤神舟十三号几点着陆外国人看神舟十三号神十三返回舱成功着陆预览时标签不可点收录于话题#个上一篇下一篇